Targeted modulation of MGMT: clinical implications.

نویسندگان

  • Lili Liu
  • Stanton L Gerson
چکیده

O(6)-Methylguanine DNA methyltransferase (MGMT) has been studied for >20 years as a gene that is associated with the mutagenicity and cytotoxicity induced by either methylating carcinogens or alkylating (methylating and chloroethylating) therapeutic agents. Pioneering studies of alkylating agents identified alkylated guanine at the O(6) position, the substrate of MGMT, as a potentially promutagenic and lethal toxic DNA lesion. MGMT plays a prominent role in DNA adduct repair that limits the mutagenic and cytotoxic effect of alkylating agents. Because of its role in cancer etiology and chemotherapy resistance, MGMT is of particular interest. In this article, the clinical effect of MGMT expression and targeted modulation of MGMT will be summarized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribozyme-mediated modulation of human O6-methylguanine-DNA methyltransferase expression.

A synthetic oligonucleotide containing ribozyme sequences targeted to the 5' region of the human O6-methylguanine-DNA methyltransferase (MGMT) mRNA has been constructed. This ribozyme demonstrates cleavage activity in vitro in the presence of Mg2+. To determine whether this ribozyme can function in vivo, HeLa CCL2 cells were transfected with a mammalian expression vector containing the ribozyme...

متن کامل

Radiation-induced Non-targeted Effect and Carcinogenesis; Implications in Clinical Radiotherapy

Bystander or non-targeted effect is known to be an interesting phenomenon in radiobiology. The genetic consequences of bystander effect on non-irradiated cells have shown that this phenomenon can be considered as one of the most important factors involved in secondary cancer after exposure to ionizing radiation. Every year, millions of people around the world undergo radiotherapy in order to cu...

متن کامل

Modulation of 1,3-bis-(2-chloroethyl)-1-nitrosourea resistance in human tumor cells using hammerhead ribozymes designed to degrade O6-methylguanine DNA methyltransferase mRNA.

O6-Methylguanine DNA Methyltransferase (MGMT) protects tumor cells from the cytotoxic effects of the DNA alkylating agent 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). To improve the therapeutic index of BCNU, biochemical strategies to deplete MGMT activity have been developed. In the present study, a molecular strategy for modulating BCNU resistance was explored using hammerhead ribozymes (Rz)...

متن کامل

Role of MGMT Methylation Status at Time of Diagnosis and Recurrence for Patients with Glioblastoma: Clinical Implications.

BACKGROUND MGMT methylation status represents a powerful prognostic factor in newly diagnosed glioblastoma (GBM). Recently, its role in recurrent tumors has also been suggested; however, few data investigating the stability of this biomarker during the clinical course of the disease are available. In this study, we evaluated the rate of change of MGMT methylation status between diagnosis and fi...

متن کامل

Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide.

PURPOSE In the setting of a prospective clinical trial, we determined the predictive value of the methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter for outcome in glioblastoma patients treated with the alkylating agent temozolomide. Expression of this excision repair enzyme has been associated with resistance to alkylating chemotherapy. EXPERIMENTAL DESIGN The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2006